Random defense: Cells play ‘molecular roulette’ to determine how body fights disease

A new discovery about how cells make antibodies has revealed the surprisingly random way the body’s immune system defends against infection and disease.

The study, led by researchers at WEHI in Melbourne, Australia, showed cells responsible for making antibody proteins use a randomisation process to determine which type of antibody to make, behaviour that scientists have dubbed ‘molecular roulette’.

Researchers have leveraged the critical insights to create a formula for predicting this allocation process, in a major step towards understanding why some people are biologically prone to developing diseases like asthma, autoimmune conditions and infections.

At a glance

  • First study to show B cells use a randomisation process when determining which type of antibody to create. Antibodies protect the body against pathogens and viruses.
  • WEHI-led finding unravels first mathematical model that could predict the type and amount of antibody that will be produced.
  • Landmark discovery could lead to future research that can prevent this process from being disrupted to cause disease, while bringing the field significantly closer to using quantifiable data to map how the immune system behaves.

Antibodies are produced by immune cells to protect our body against disease by alerting the immune system to foreign invaders, like pathogens and viruses.

B cells are a type of immune cell (also known as B lymphocytes) that produce five different classes of antibodies, each tailored to defend the body against a specific bug — including bacteria and parasites.

Source: Read Full Article